Weakly Supervised Salient Object Detection Using Image Labels

نویسندگان

  • Guanbin Li
  • Yuan Xie
  • Liang Lin
چکیده

Deep learning based salient object detection has recently achieved great success with its performance greatly outperforms any other unsupervised methods. However, annotating per-pixel saliency masks is a tedious and inefficient procedure. In this paper, we note that superior salient object detection can be obtained by iteratively mining and correcting the labeling ambiguity on saliency maps from traditional unsupervised methods. We propose to use the combination of a coarse salient object activation map from the classification network and saliency maps generated from unsupervised methods as pixel-level annotation, and develop a simple yet very effective algorithm to train fully convolutional networks for salient object detection supervised by these noisy annotations. Our algorithm is based on alternately exploiting a graphical model and training a fully convolutional network for model updating. The graphical model corrects the internal labeling ambiguity through spatial consistency and structure preserving while the fully convolutional network helps to correct the cross-image semantic ambiguity and simultaneously update the coarse activation map for next iteration. Experimental results demonstrate that our proposed method greatly outperforms all state-of-the-art unsupervised saliency detection methods and can be comparable to the current best strongly-supervised methods training with thousands of pixel-level saliency map annotations on all public benchmarks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weakly Supervised Learning for Salient Object Detection

Recent advances of supervised salient object detection models demonstrate significant performance on benchmark datasets. Training such models, however, requires expensive pixel-wise annotations of salient objects. Moreover, many existing salient object detection models assume that at least a salient object exists in the input image. Such an impractical assumption leads to less appealing salienc...

متن کامل

Weakly Supervised Top-down Salient Object Detection

Top-down saliency models produce a probability map that peaks at target locations specified by a task/goal such as object detection. They are usually trained in a fully supervised setting involving pixel-level annotations of objects. We propose a weakly supervised top-down saliency framework using only binary labels that indicate the presence/absence of an object in an image. First, the probabi...

متن کامل

Weakly supervised object detection using pseudo-strong labels

Object detection is an import task of computer vision. A variety of methods have been proposed, but methods using the weak labels still do not have a satisfactory result. In this paper, we propose a new framework that using the weakly supervised method’s output as the pseudo-strong labels to train a strongly supervised model. One weakly supervised method is treated as black-box to generate clas...

متن کامل

Weakly- and Semi-Supervised Object Detection with Expectation-Maximization Algorithm

Object detection when provided image-level labels instead of instance-level labels (i.e., bounding boxes) during training is an important problem in computer vision, since large scale image datasets with instance-level labels are extremely costly to obtain. In this paper, we address this challenging problem by developing an ExpectationMaximization (EM) based object detection method using deep c...

متن کامل

Weakly Supervised Saliency Detection with A Category-Driven Map Generator

Top-down saliency detection aims to highlight the regions of a specific object category, and typically relies on pixel-wise annotated training data. In this paper, we address the high cost of collecting such training data by presenting a weakly supervised approach to object saliency detection, where only image-level labels, indicating the presence or absence of a target object in an image, are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018